• Home
  • News
  • Startups
  • Innovation
  • Industry
  • Business
  • Green Innovations
  • Venture Capital
  • Market Data
    • Economic Calendar
    • Stocks
    • Commodities
    • Crypto
    • Forex
Facebook Twitter Instagram
[gtranslate]
Facebook Twitter Instagram YouTube
Innovation & Industry
Banner
  • Home
  • News
  • Startups
  • Innovation
  • Industry
  • Business
  • Green Innovations
  • Venture Capital
  • Market Data
    • Economic Calendar
    • Stocks
    • Commodities
    • Crypto
    • Forex
Login
Innovation & Industry
Green Innovations

Researchers develop bendable energy storage materials

News RoomNews RoomMarch 19, 2024No Comments2 Mins Read
Synergistic effect of thermal activation and plasma. Credit: POSTECH

Imagine being able to wear your smartphone on your wrist, not as a watch, but literally as a flexible band that surrounds around your arm. How about clothes that charge your gadgets just by wearing them?

Recently, a collaborative team led by Professor Jin Kon Kim and others has brought a step closer to making this realty. This research work was published in Advanced Materials.

Mesoporous metal oxides (MMOs) are characterized by pores ranging from 2 to 50 nanometers (nm) in size. Due to their extensive surface area, MMOs have various applications, such as high-performance energy storage and efficient catalysis, semiconductors, and sensors. However, the integration of MMOs on wearable and flexible devices remains a great challenge, because plastic substrates could not maintain their integrity at elevated temperatures (350°C or above) where MMOs could be synthesized.

Bendable energy storage materials by cool science
Simultaneously induction of metal oxides formation and template removal. Credit: POSTECH

The research team tackled this problem by using synergetic effect of heat and plasma to synthesize various MMOs including vanadium oxide (V2O5), renowned high-performance energy storage materials, V6O13, TiO2, Nb2O5, and WO3, on flexible materials at much lower temperatures (150 ~ 200°C). The high reactive plasma chemical moieties provide enough energy that could be compensated by high temperature. The fabricated devices could be bent thousands of times without losing the energy storage performance.

Professor Jin Kon Kim said, “We’re on the brink of a revolution in wearable tech. Our breakthrough could lead to gadgets that are not only more flexible but also much more adaptable to our daily needs.”

More information:
Keon‐Woo Kim et al, Low‐Temperature, Universal Synthetic Route for Mesoporous Metal Oxides by Exploiting Synergistic Effect of Thermal Activation and Plasma, Advanced Materials (2024). DOI: 10.1002/adma.202311809

Provided by
Pohang University of Science and Technology



Read the full article here

Related Articles

Neutron scattering study points the way to more powerful lithium batteries

Green Innovations April 16, 2024

Researchers can help shipowners achieve ambitious climate targets

Green Innovations April 16, 2024

Solar energy can uplift rural Ethiopians, but is hard to come by

Green Innovations April 16, 2024

A timer can shorten your shower even when you have no incentive to save water

Green Innovations April 16, 2024

High electric bills threaten California’s clean future: This plan could help

Green Innovations April 16, 2024

New insight about the working principles of bipolar membranes could guide future fuel cell design

Green Innovations April 16, 2024
Add A Comment

Leave A Reply Cancel Reply

Copyright © 2025. Innovation & Industry. All Rights Reserved.
  • Privacy Policy
  • Terms of use
  • Press Release
  • Advertise
  • Contact

Type above and press Enter to search. Press Esc to cancel.

Sign In or Register

Welcome Back!

Login to your account below.

Lost password?