• Home
  • News
  • Startups
  • Innovation
  • Industry
  • Business
  • Green Innovations
  • Venture Capital
  • Market Data
    • Economic Calendar
    • Stocks
    • Commodities
    • Crypto
    • Forex
Facebook Twitter Instagram
[gtranslate]
Facebook Twitter Instagram YouTube
Innovation & Industry
Banner
  • Home
  • News
  • Startups
  • Innovation
  • Industry
  • Business
  • Green Innovations
  • Venture Capital
  • Market Data
    • Economic Calendar
    • Stocks
    • Commodities
    • Crypto
    • Forex
Login
Innovation & Industry
Green Innovations

New method for mass-producing polymer solid electrolytes needed in batteries

News RoomNews RoomMarch 8, 2024No Comments2 Mins Read
Depiction of the fabrication process for HCC-derived SPE, utilizing a custom apparatus accompanied by digital images of both the HCC and SPE films. Credit: Energy Storage Materials (2024). DOI: 10.1016/j.ensm.2024.103260

A research team led by Professor Seok Ju Kang in the School of Energy and Chemical Engineering at UNIST has unveiled a technique for mass-producing polymer solid electrolytes, crucial components in batteries. Their paper is published in the journal Energy Storage Materials.

Departing from the traditional melt casting method, the team introduced a horizontal centrifugal casting method to overcome existing limitations. This innovative approach has redefined the production process for high-quality polymer solid electrolytes, revolutionizing the industry.

Drawing inspiration from the horizontal centrifugal casting technique used in producing iron pipes, the research team successfully achieved a uniform polymer solid electrolyte by rotating the solution horizontally during manufacturing. This method ensures minimal raw material wastage and offers superior electrochemical performance, economic feasibility, and effectiveness compared to conventional methods.

Professor Kang commented, “By adapting the iron pipe manufacturing process, we have developed a method capable of mass-producing uniform and high-performance solid electrolytes.”

The newly developed technology enables a remarkable 13-fold increase in production speed by eliminating the need for drying polymer solutions and vacuum heat treatment, thereby streamlining the manufacturing process significantly.

Moreover, the production volume can be easily adjusted by varying the size of the horizontal centrifugal casting cylinder, ensuring consistent thickness and surface quality of polymer solid electrolytes, ideal for battery production.

Lead author Hyunwoo Kim from the School of Energy and Chemical Engineering at UNIST stated, “Through this method, we have achieved enhanced battery stability and performance without altering the material composition.”

Professor Kim said, “The elimination of the time-consuming and energy-intensive vacuum heat treatment process is a key aspect of this study, enabling efficient mass production of polymer solid electrolytes.”

More information:
Hyunwoo Kim et al, High-performance solid-state Li-ion batteries enabled by homogeneous, large-area ferroelectric PVDF-TrFE solid polymer electrolytes via horizontal centrifugal casting method, Energy Storage Materials (2024). DOI: 10.1016/j.ensm.2024.103260

Provided by
National Institute of Standards and Technology



Read the full article here

Related Articles

Neutron scattering study points the way to more powerful lithium batteries

Green Innovations April 16, 2024

Researchers can help shipowners achieve ambitious climate targets

Green Innovations April 16, 2024

Solar energy can uplift rural Ethiopians, but is hard to come by

Green Innovations April 16, 2024

A timer can shorten your shower even when you have no incentive to save water

Green Innovations April 16, 2024

High electric bills threaten California’s clean future: This plan could help

Green Innovations April 16, 2024

New insight about the working principles of bipolar membranes could guide future fuel cell design

Green Innovations April 16, 2024
Add A Comment

Leave A Reply Cancel Reply

Copyright © 2026. Innovation & Industry. All Rights Reserved.
  • Privacy Policy
  • Terms of use
  • Press Release
  • Advertise
  • Contact

Type above and press Enter to search. Press Esc to cancel.

Sign In or Register

Welcome Back!

Login to your account below.

Lost password?